Utrametric diffusion equation on energy landscape to model disease spread in hierarchic socially clustered population
1. A. Khrennikov, Ultrametric model for covid-19 dynamics: an attempt to explain slow approaching herd immunity in Sweden. https://www.preprints.org/manuscript/202007.0037/v1 ; https://www.medrxiv.org/content/10.1101/2020.07.04.20146209v1 .
2. Khrennikov A., Human subconscious as a p-adic dynamical system. Journal of Theoretical Biology, 193(2),
3. 179-96 (1998).
4. S. Albeverio, A. Khrennikov, P. E. Kloeden, Memory retrieval as a p-adic dynamical system.
5. Biosystems 49, N 2, 105-115 (1999).
6. V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev and V. A. Osipov, p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes. J. Phys. A: Math. Gen. 35, 2002, 177-190.
7. R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1991).
8. H. Andersson, T. Britton, Stochastic Epidemic Models and Their Statistical Analysis (Springer, 2000).
9. O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics (Princeton Univ. Press, 2013).
10. D. Smith and L. Moore, The SIR Model for Spread of Disease - The Differential Equation Model.
11. https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model.
12. K. I. Kim, Zh. Lin, Q. Zhang, An SIR epidemic model with free boundary. Nonlinear Analysis: Real World Appl.,
13. 14, 2013, 1992-2001.
14. S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, H. Coupland, T. A. Mellan, H. Zhu, T. Berah, J. W. Eaton, P. N. P. Guzman, N. Schmit, L. Cilloni, K. E. C. Ainslie, M. Baguelin, I. Blake, A. Boonyasiri, O. Boyd, L. Cattarino, C. Ciavarella, L. Cooper, Z. Cucunubá, G. Cuomo-Dannenburg, A. Dighe, B. Djaafara, I. Dorigatti, S. van Elsland, R. FitzJohn, H. Fu, K. Gaythorpe, L. Geidelberg, N. Grassly, W. Green, T. Hallett, A. Hamlet, W. Hinsley, B. Jeffrey, D. Jorgensen, E. Knock, D. Laydon, G. Nedjati-Gilani, P. Nouvellet, K. Parag, I. Siveroni, H. Thompson, R. Verity, E. Volz, C. Walters, H. Wang, Y. Wang, O. Watson, P. Winskill, X. Xi, C. Whittaker, P. G. T. Walker, A. Ghani, C. A. Donnelly, S. Riley, L. C. Okell, M. A. C. Vollmer, N. M. Ferguson, S. Bhatt, Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries (Imperial College London, 2020); .doi:10.25561/77731
15. N. M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg, A. Dighe, I. Dorigatti, H. Fu, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, L. C. Okell, S. van Elsland, H. Thompson, R. Verity, E. Volz, H. Wang, Y. Wang, P. G. T. Walker, C. Walters, P. Winskill, C. Whittaker, C. A. Donnelly, S. Riley, A. C. Ghani, Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand (Imperial College London, 2020); 10.25561/77482.doi
16. T. Britton, Basic estimation-prediction techniques for Covid-19, and a prediction for Stockholm. Preprint, April 2020
17. DOI: 10.1101/2020.04.15.20066050
18. T. Britton, Basic estimation-prediction techniques for Covid-19, and a prediction for Stockholm.
19. https://www.medrxiv.org/content/10.1101/2020.04.15.20066050v2
20. T. Britton, P. Trapman, F.G. Ball, The disease-induced herd immunity level for Covid-19 is substantially lower than the classical herd immunity level. https://www.medrxiv.org/content/10.1101/2020.05.06.20093336v2
21. W. Bock, B. Adamik, M. Bawiec, V. Bezborodov, M. Bodych, J. P. Burgard, T. Goetz, T. Krueger, A. Migalska, B. Pabjan, T. Ozanski, E. Rafajlowicz, W. Rafajlowicz, E. Skubalska-Rafajlowicz, S. Ryfczynska, E. Szczurek, P. Szymanski, Mitigation and herd immunity strategy for COVID-19 is likely to fail. medRxiv 2020.03.25.20043109 [Preprint]. 5 May 2020; .doi:10.1101/2020.03.25.20043109
22. Abstract/FREE Full TextGoogle Scholar
23. H. Salje, C. T. Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti, J. Paireau, A. Andronico, N. Hozé, J. Richet, C.-L. Dubost, Y. Le Strat, J. Lessler, D. Levy-Bruhl, A. Fontanet, L. Opatowski, P.-Y. Boelle, S. Cauchemez, Estimating the burden of SARS-CoV-2 in France. Science 10.1126/science.abc3517 (2020). doi:10.1126/science.abc3517
24. J. Wallinga, P. Teunis, M. Kretzschmar , Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am. J. Epidemiol. 164, 936–944 (2006).
25. R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001).
26. M. J. Ferrari, S. Bansal, L. A. Meyers, O. N. Bjørnstad , Network frailty and the geometry of herd immunity. Proc. Biol. Sci. 273, 2743–2748 (2006).
27. T. Britton, F. Ball, P. Trapman, A mathematical model reveals the influence of
28. population heterogeneity on herd immunity to SARS-CoV-2. Science 23 Jun 2020: eabc6810
29. M. Mezard, G. Parisi, N. Sourlas, G. Toulouse, and
30. M. Virasoro, Phys. Rev. Lett. 52, 1156 (1984).
31. R. G. Palmer, Adv. Phys. 31, 66a (1982); G. Parisi, Phys.
32. Rev. Lett. 50, 1946 (1983).