ПРЕПРИНТ
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
В настоящей работе представлен обзор научных данных зарубежных и российских исследователей о возможном обитании возбудителя COVID-19 в водной среде, сведений о путях распространения инфекционного агента SARS-CoV-2 и принимаемых мерах по борьбе с ним в водной среде. Показано присутствие возбудителя COVID-19 в различных объектах окружающей среды: системах водоснабжения, сточных водах, поверхностных водах. Определены методы детекции вирусных частиц SARS-CoV-2 на основе выявления штаммов других вирусов в объектах окружающей среды. Это позволило понять, что попадание вируса в экосистему происходит за счёт абсорбирования с различными фомитами. В обзоре представлены результаты работ, проведенных в ряде стран во время пандемии, подтверждающие присутствие COVID-19 в речной воде. Часть исследований указывает на устойчивость вирусных частиц, присутствующих в объектах окружающей среды, к дезинфицирующим средствам, что в свою очередь определяет актуальность углубленных исследований с позиции обеспечения санитарно- противоэпидемического режима на станциях водоподготовки.
Журавлев П. В., Калюжин А. С., Кулак М. А., Алексанина Н. В., Гапон М. Н., Твердохлебова Т. И. 2020. ВОЗМОЖНОСТЬ ОБИТАНИЯ ВОЗБУДИТЕЛЯ COVID- 19 В ВОДНОЙ СРЕДЕ (ОБЗОР ЛИТЕРАТУРЫ). COVID19-PREPRINTS.MICROBE.RU. https://doi.org/10.21055/preprints-3111891
1. Summary table of SARS cases by country, 1 November 2002 – 7 August 2003. Доступно по: https://www.who.int/csr/sars/coun- try/2003_08_15/en/. Ссылка активна на: 1 Сентября 2020.
2. Покровский В.И., Малеев В.В., Кисилев О.И. Коронавирус SARS является возбудителем SARS. Временное руководство [Коронавирус SARS - возбудитель атипичной пневмонии. Временные методические рекомендации. Москва, 2003. (на русском)
3. Чучалин А.Г. Синдром острого повреждения легких. РМЖ.2006; 14 (22): 1582.
4. Riley S., Fraser C., Donnelly C.A.,et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Sci- ence, 2003;300(5627):1961-6. DOI: http://doi.org/10.1126/science.1086478
5. Lipsitch M., Cohen T., Cooper B.,et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300(5627): 1966-70. DOI: http://doi.org/10.1126/science.1086616
6. Surveillance case definitions for human infection with novel coro- navirus (nCoV). Доступно по: https://www.who.int/internal-publi- cations-detail/surveillance-case-definitions-for-human-infection- withnovel-coronavirus-(ncov). Ссылка активна на: 1 Сентября 2020.
7. Disease commodity package – Novel Coronavirus (nCoV). Доступно по: https://www.who.int/publications-detail/disease-commodi- ty-package---novel-coronavirus-(ncov),. Ссылка активна на: 1 Сентября 2020.
8. Золин В. В., Оськина О. П., Солодкий В. В., и др.Изучение жизнеспособности вируса SARS-CoV-2 в питьевой и морской воде. Сovid19 - preprints.microbe.ru. Доступно по: https://doi.org/10.21055/preprints-3111723. Ссылка активна на: 1 Сентября 2020.
9. Cruvinel V.R.N, Marques C.P, Cardoso V., et al. Health conditions and occupational risks in a novel group: Waste pickers in the largest open garbage dump in Latin America. BMC Public Health. 2019; 581:16–19.
10. Chen N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395: 507–13.
11. Wang D. et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J. Am. Med.Assoc.2020;323:1061–1069.
12. Wölfel R. et al. Virological assessment of hospitalized patients with COVID-2019.Nature. 2020;581:465–469.
13. Huang C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet.2020; 395:497–506.
14. Holshue M. L. et al. First case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020;382:929–936.
15. Zhou P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.
16. Mallapaty S. How sewage could reveal true scale of coronavirus outbreak. Nature.2020; 580:176–177.
17. Lesté-Lasserre C. Coronavirus found in Paris sewage points to early warning system. Science. Доступно по:https://doi.org/10.1126/science.abc3799. Ссылка активна на: 1 Сентября 2020.
18. Gu J., Han B., Wang J. COVID-19: gastrointestinal manifestations and potential fecal–oral transmission. Gastroenterology.2020;158:1518–1519.
19. Kam K. et al. A well infant with coronavirus disease 2019 with high viral load. Clin. Infect. Dis. Доступно по: https://doi.org/10.1093/cid/ciaa201. Ссылка активна на: 1 Сентября 2020.
20. Ling Y. et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin. Med. J. (Engl.). 2020;133:1039-1043.
21. Wang W. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA - J. Am. Med. Assoc.2020; 323:1843–1844.
22. Tang A. et al. Detection of Novel Coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg. Infect. Dis.2020;26:1337–1339.
23. Xu Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020;26:502–505.
24. Xing Y.-H. et al. Prolonged viral shedding in feces of pediatric patients with Coronavirus Disease 2019. J. Microbiol. Immunol. Infect. DOI: https://doi.org/10.1016/j.jmii.2020.03.021.
25. Munster V. J., Koopmans M., van Doremalen N., et al.. A novel coronavirus emerging in China—key questions for impact assessment. N. Engl. J. Med.2020; 382:692–694.
26. Harmer D., Gilbert M., Borman R., et al. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532:107–110.
27. Weiss S. R., Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome Coronavirus. Microbiol. Mol. Biol.Rev.2005; 69:635–664.
28. Organization (WHO), W. H. Water, sanitation, hygiene, and waste management for the COVID-19 virus. Доступно по:https://apps.who.int/iris/bitstream/handle/10665/331499/ WHO-2019-nCoV-IPC_WASH-2020.2-eng.pdf?sequence=1&isAllowed=y. Ссылка активна на: 1 Сентября 2020.
29. Jamie Shutler, Krzysztof Zaraska, Thomas M. Holding, et al. Ravinder Dahiya Risk of SARS-CoV-2 infection from contaminated water systems. DOI: https://doi.org/10.1101/2020.06.17.20133504
30. Li R. A., McDonald J. A., Sathasivan A., et al. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: a systematic review. Water Res.2019; 153:335–348.
31. Guerrero-Latorre L., Ballesteros I., Villacrés I. M., et al. SARS-CoV-2 in river water: Implications in low sanitation countries. Science of The Total Environment. DOI: 10.1016/j.scitotenv.2020.140832
32. Rodriguez Hector, Alexander Delgado, Anna Nolasco, et al.. From Waste to Resource. Water Papers. World Bank. DOI: https://doi.org/doi:10.1596/33436
33. Voloshenko-Rossin A., Gasser G., Cohen K., et al. Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro–Guayllabamba–Esmeraldas rivers. Environ. Sci. Process. Impacts.2015;17, 41–53. DOI: https://doi.org/10.1039/C4EM00394B
34. Guerrero-Latorre L., Romero B., Bonifaz E., et al. Quito's virome: Metagenomic analysis of viral diversity in urban streams of Ecuador's capital city. Sci Total Environ.2018;645:1334 – 1343.DOI: https://doi.org/10.1016/j.scitotenv.2018.07.213
35. Ministerio del Ambiente de Ecuador. 097-A Refórmese el Texto Unificado de Legislación Secundaria. Registro Oficial. Año III - No 387.Quito, miércoles 4 de noviembre de 2015;78:6.
36. Rusiñol M., Fernandez-Cassi X., Hundesa,A., et al. Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. Water Research. 2014; 59: 119-129. DOI:https://doi.org/doi:10.1016/j.watres.2014.04.013
37. Ríos-Touma B., Acosta R., Prat N. The Andean biotic index (ABI): Revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Rev. Biol. Trop.2014; 62:249–273.
38. Randazzo W., Cuevas-Ferrando E., Sanjuan R., et al. Metropolitan Wastewater Analysis for COVID-19 Epidemiological Surveillance. Med Rxiv. 2020;4:23. DOI: https://doi.org/10.1101/2020.04.23.20076679
39. Wurtzer S., Marechal V., Mouchel J.M., et al. Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv 2020.04.12.20062679; DOI: https://doi.org/10.1101/2020.04.12.20062679
40. Mizumoto K., Kagaya K., Zarebski A., et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, Eurosurveillance,2020;25:1–5.
41. DOI:10.2807/1560- 7917.ES.2020.25.10.2000180
42. Kimball A., Hatfield K. M., Arons M., et al. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility - King County, Washington, March 2020. MMWR. Morbidity and mortality weekly report.2020; 69(13):377–381. DOI: https://doi.org/10.15585/mmwr.mm6913e
43. Bivins A., North D., Ahmad A., et al. Wastewater- Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19. Environ. Sci. Technol. DOI: https://doi.org/10.1021/acs.est.0c02388
44. Franklin A. B., Bevins S. N. Spillover of SARS-CoV-2 into novel wild hosts in North America: A conceptual model for perpetuation of the pathogen. The Science of the total environment, 733, 139358. Advance online publication. DOI: https://doi.org/10.1016/j.scitotenv.2020.139358
45. Medema G., Heijnen L., Elsinga G., et al. Presence of SARSCoronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. A-F. DOI: https://doi.org/10.1021/acs.estlett.0c00357 (2020).
46. Ahmed,W. et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728.
47. La Rosa, G. et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ.2020; 736.
48. Randazzo W., Cuevas-Ferrando E., Sanjuan R., et al. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. DOI: https://doi.org/10.1101/2020.04.23.20076679v2.
49. Wurtzer S., Marechal V., Mouchel J.-M., et al. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. DOI: https://doi.org/10.1101/2020.04.12.20062679v1.full.pdf .
50. Tibbetts J. Combined sewer systems: down, dirty, and out of date. Environ. Health Perspect.2005; 113: 465–467.
51. De Man H. et al. Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Res.2014; 48: 90–99.
52. Banks D., Karnachuk O. V., Parnachev V. P., et al. B. Groundwater contamination from rural pit latrines: examples from Siberia and Kosova. J. Chart. Inst. Water Environ. Manag.2002; 16:147–152.
53. The Sphere Project & The Sphere Project. 4. Minimum Standards in Water Supply, Sanitation and Hygiene Promotion. in Humanitarian Charter and Minimum Standards in Humanitarian Response. DOI: https://doi.org/10.3362/9781908176202.004 (2011).
54. Masclaux F. G., Hotz P., Gashi D., et al. Assessment of airborne virus contamination in wastewater treatment plants. Environ. Res. 2014;133:260–265.
55. Wigginton K. R., Ye Y., Ellenberg R. M. Emerging investigators series: The source and fate of pandemic viruses in the urban water cycle. Environ. Sci.: Water Res. Technol.2015; 1: 735–746.
56. Yu I. T. S., Qiu H., Tse L. A. et al. Severe acute respiratory syndrome beyond amoy gardens: completing the incomplete legacy. Clin. Infect. Dis. 2014;58: 683–686.
57. Regan H. How can the coronavirus spread through bathroom pipes? Experts are investigating in Hong Kong. CNN. Доступно по: https://edition.cnn.com/2020/02/12/asia/hongkong-coronavirus-pipes-intlhnk/index.html. Ссылка активна на : 1 Сентября 2020.
58. Press Trust of India. Kapashera hot spot: No space for social-distancing in cramped rooms, common toilets. INDIA TODAY. https://www.indiatoday.in/india/ story/kapashera-hot-spot-no-space-for-social-distancing-in-cramped-roomscommon- toilets-1673968-2020-05-03 (2020).